
www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

Corporate Level Software Management

JOHN D. COOPER

Abstract-Software management is considered from the corporate
headquarters viewpoint. This perspective encompasses all facets of
management, but specifically dealt with are those that are brought to
bear on software management obstacles and ways to cope with them are
presented. Standardization is presented as the most effective manage-
ment device available at the corporate level for enhancing the overall
software posture. Corporate management actions available for favorably
influencing the quality of software over its life cycle and research
initiatives are described.

Index Terms-Interface specifications, life cycle costs, life cycle man-
agement plan, maintenance, management disciplines, software contracts,
software management, standardization.

I. INTRODUCTION
THE U.S. Navy is a 30 billion dollar a year organization with

corporate software issues very similar to those of large
corporations such as General Motors, EXXON, and the Ford
Motor Company. This paper will present a look at software
management from the corporate headquarters staff point of
view. This perspective includes overall software costs, satisfac-
tion of corporate users of software, performance of software to
achieve goals of the corporation, advanced planning for soft-
ware requirements in the future, and anticipating life cycle
costs of existing software programs. Software management at
this level requires some techniques to achieve control which
are not applied directly to the software development and
maintenance process. Concepts such as standards and proce-
dures, fiscal control, development check points, and product
assurance are used by corporate management to monitor and
insure that development projects are proceeding on schedule
and that operational systems are performing satisfactorily.

First, some of the obstacles and pitfalls at the corporate level
are presented. This is followed by a section on standardization,
a discipline which is very important because of its great poten-
tial for reducing total system costs. Next discussed, arranged
in order by the software life cycle phases, are various policies
and procedures that are available for enhancing the overall
corporate software posture. This is followed by a brief section
which presents a few management control mechanisms. The
paper concludes with some research and development op-
portunities in the area of software management.
A synopsis of corporate level software management could be

stated as follows. The current state of the art is driven by the

Manuscript received June 15, 1977; revised November 15, 1977,
February, 27, 1978, and April 5, 1978.
The author is with the United States Navy, Headquarters Naval Material

Command, Washington, DC 20360.

fact that digital technology is evolving faster than is our ability
to manage it. However, corporate headquarters is in an espe-
cially strong position to influence, in a constructive way, the
future evolution of software management.

II. MANAGEMENT OBSTACLES AND PITFALLS
There are various obstacles and pitfalls confronting the cor-

porate level software manager. The more significant ones to
be discussed in this section are shown in Tables I and II. A
glance at the lists will reveal that they are, for the most part,
the growing pains of an adolescent technology. If they were
technical obstacles, they could be confronted head-on. How-
ever, they are primarily educational and/or psychological in
nature making them very difficult to resolve.
Probably the greatest single obstacle to corporate software

managers is a lack of computer related experience on the part
of corporate decision makers. When these executives received
their education and served their apprenticeships in projects,
computers had not yet emerged as a significant system develop-
ment factor. As a consequence, they often lack an apprecia-
tion for the unique complexities of software development.
Thus, when trying to establish a corporate policy, to initiate
a software oriented project, or to obtain commitment to a cor-
porate standard, the software manager is often frustrated by
the old traditional hardware rationale being applied to the cor-
porate decision making process.
A closely related obstacle is a general lack of available com-

puter oriented expertise for management within the projects
that contain computers. This is a function of the explosion in
the application of digital technology within system develop-
ments which is occurring at a rate faster than the ability to grow,
staff, and manage the attendant software developments and
maintenance. What this means at the corporate level is that the
demand for computer knowledgeable personnel exceeds the
supply of this type of expertise within the labor force. To
compensate for this deficiency, it is therefore necessary to
provide the projects with all of the crutches, tools, and help
that is possible.
Another obstacle to software management from a corporate

viewpoint is the hardware orientation of the industry. Hardware
came first and thus is deeply entrenched. People are familiar
with it. Software is relatively new, intangible, and has evolved
with an aura of the mystic. It is human nature to concentrate
on the things that are familiar and to shy away from the un-
known or foreign. As a result, projects are usually staffed with
a dominance of hardware engineers; project managers try to
treat software just like hardware (i.e., "MIL-STD-XYZ has been
effective in hardware for years-I want it applied to my soft-

0098-5589/78/0700-0319$00.75 © 1978 IEEE

319

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

TABLE I
PSYCHOLOGICAL OBSTACLES

1) Lack of computer related experience by senior executives.
2) Lack of computer related expertise on project staffs.
3) Preoccupation with hardware by managers.
4) Preoccupation with development by project managers.
5) Inadequate student preparation by academia.

TABLE II

PROCEDURAL OBSTACLES AND PITFALLS

1) Potential for projects to become overly complex.
2) Use of assembly level languages in projects.
3) Buying-on a contract by the vendor.
4) Lack of adequate risk, cost, and reliability estimating techniques.
5) Lack of uniform software practices.

ware, too"). Quality Assurance, Reliability and Maintainability,
and Configuration Management personnel try to treat software
as hardware technical data. The impact of this orientation is
that the overall corporate software posture is impaired.
A common pitfall is that project managers tend to be develop-

ment oriented. Their most pressing responsibility is the develop-
ment of their system within budget and on schedule. Con-
sequently, they optimize the development process, often at
the expense of overall life cycle cost considerations. What
typically happens when costs start to overrun is that some of
the documentation is cut to get back within the budget. This
is followed closely by curtailing the testing and training. From
the corporate global viewpoint, this practice is a clear case of
false economy by being penny wise and pound foolish.
Academia could be of greater help to corporate level software

management problems than it currently is. Computer science
students simply are not prepared to face the real world of non-
academic problems. Help is needed in the following:

1) assisting the student in making the transition from the
situation where a computer program is developed by one person
(himself) to a project where a single large computer program

(or an interrelated set of programs) is developed by many dif-
ferent people;
2) making the student fully appreciative and knowledgeable

in the several disciplines of quality assurance, configuration
management, integration, testing, and documentation; and

3) making the student "6end product" oriented instead of
academic/laboratory oriented.
In contrast to mathematics which includes both theoretical

and applied branches, computer science education should be
faulted for not adequately developing the applied or engineer-
ing branch of the field. The computer science perspective in
academia is contrasted by the software engineering perspective
in industry. A merge is needed in both academia and industry.
For the time being, however, corporate resources are required
to compensate by providing the necessary education and train-
ing.
Moving into the area of methodological or procedural obsta-

cles and pitfalls, the escalation of project complexity is a pitfall

that is of concern at a corporate level. A great deal of discipline
has to be exercised over (or better yet, by) the project manager,
especially in the beginning, to restrain the project from becom-
ing overly complex. There is a strong desire by the project
manager, his staff and his contractor to use the latest, greatest,
so-called "state of the art" to produce an elegant system. To
unnecessarily incur the expense and the risk without sufficient
cause is not good business judgment.
Project managers also are too often reluctant to say no to a

user request for a change or a new feature. Instead, they accept
the task of attempting too many new developments simulta-
neously. As one new facet of the development experiences
growing pains, it has impact on other parts of the development;
then some other facet of the development slips, again impacting
the rest of the development, and so on, making the total system
development a long, laborious, and complex task. In order to
optimize their probability of success, projects should be kept
as simple as possible and still be able to satisfy their funda-
mental requirements.
An ever-present obstacle is the assembly language syndrome.

Some of the main reasons for utilizing Higher Order Languages
are to improve software reliability and the productivity of
programmers [1]. Yet for a variety of reasons (almost all of
which are invalid), assembly level languages are still being widely
used to develop software. From a corporate viewpoint, the use
of assembly language is one of the greatest sins that can be
committed. Its impact on total life cycle costs cannot be
underestimated. It is curious that coercion by corporate
management must still be resorted to today in order to prevent
the unnecessary use of assembly level languages.
A very tempting but deadly pitfall is the contract "buy-in."

In large organizations where there is a lot of potential business
involved, contractors will sometimes underbid a competitive
procurement either to get a foot in the door or to gamble on
growth or project escalation. Having "bought in" on the con-
tract (maybe inadvertently) the vendor must then minimize
costs. Obviously, in these situations, just as everywhere else,
you get what you pay for. Since the contractor is counting on
growth to make his money, you can be sure he will do every-
thing he can to get the contract escalated. It is very tempting
to accept a buy-in, especially if the project is underfunded to
start with; however, the project ends up paying for it later when
funds to meet cost escalations are not included in the budget.
This has an especially adverse impact on corporate planning and
budgeting.
The lack of adequate risk, cost, and reliability estimating

techniques and procedures are well-known obstacles not only
to corporate software management but to the industry at large.
At the headquarters level, these deficiencies impact product
planning, competitive analysis, budgeting contracting, schedul-
ing, and maintenance prediction. A result is the introduction
of unknowns and imprecision into all major corporate func-
tions. This is a constant source of frustration to management
personnel who are accustomed to, in some cases, operating
with very close tolerances. The inability to accurately analyze
these software parameters is a large contributor to a poor image
software possesses among corporate level managers.
Finally, corporate software management is also frustrated by

320

www.manaraa.com

COOPER: CORPORATE LEVEL SOFTWARE MANAGEMENT

a lack of uniform software practices. When projects are managed
utilizing different techniques, status reports require different
interpretations, and resource requirements occur on diverse
schedules. Different design methodologies use different sets of
milestones. Dissimilar controls are necessary for dissimilar
program building and integration schemes. Varying quality
measures, reliability prediction techniques, and cost estimation
procedures among systems preclude comparison. In short, it is
very difficult for headquarters to stay adequately informed on
the state of software within the corporation.

III. STANDARDIZATION
Up to this point in the paper, only the difficulties associated

with corporate level software management have been presented.
While a great many of these difficulties must be endured for a
time to come, there are many positive things that can be done
today to improve the management of software. Also from its
vantage point, corporate headquarters is in an especially strong
position to influence, in a constructive way, the future evolu-
tion of software management. The remainder of this paper
will discuss many of these constructive activities.
At the corporate level, standardization is probably the most

powerful management device. Almost all software management
disciplines, tools, and techniques are dependent upon some form
of standardization. Although standards are not always optimal
for every application, they are extremely cost-effective when
the entire corporation is considered and they are usually well
worth any local sacrifices in efficiency.
The logistical and training benefits due to standardization are

widely understood. Likewise, software transferability or re-
usability is obviously dependent upon standardization. Integra-
tion and interfacing of separate programs requires standariza-
tion. Standardization also broadens the labor pool, facilitates
cross utilization of personnel, enhances management visibility,
and makes procurements simpler and less risky. In short,
standardization has a very beneficial effect on corporate re-
sources.
Standards should be viable and not allowed to stagnate. The

evolution of technology is a continuous process; thus, it is
necessary for standards to evolve in a series of parallel but
discrete steps. Some of the high pay-off areas for standardiza-
tion are as follows.
1) Hardware Devices: These include mainframes and periph-

erals. Transferability of software, cross utilization or sharing
of equipment, easier maintenance, simpler logistics, and reduced
training are enhanced.
2) Interfaces: These include both hardware and software.

Standard interfaces are absolutely necessary for integrating
both hardware and software. Standard interfaces are absolutely
necessary for integrating both systems and programs. Trans-
ferability of software and cross utilization of equipment are
enhanced.
3) Programming Languages: The benefits of standardizing

on programming languages are widely understood. Its beneficial
effect on compiler maintenance, the labor force, documenta-
tion, and miscellaneous administrative matters, although lesser
known, can amount to considerable savings to the organization.
4) Computer Program Documentation: Documentation is

often maligned, but correct and complete documentation is
still cost-effective, especially from the corporate vantage point.
Transferability of programmers, computer program main-
tenance, and configuration management are greatly facilitated.
It also has a very favorable effect on the users of the documents
when there is only one form to learn and use. Automatic
documentation systems can be installed.
5) Support Software: This includes test tools, debug aids,

librarians, etc. Portability is again an issue, but the unnecessary
reinvention of any wheels can also be prevented.

6) Programming Standards and Conventions: When a single
program or system is being programmed by more than one
person, it is necessary that all adhere to the same set of pro-
gramming standards and conventions. Not only is it necessary
for interfacing with one another's code, but uniformity en-
hances readability and thus maintainability of the program. The
same set of programming standards and conventions across all
programs and systems contributes to overall corporate software
transferability and economy.
Standardization is viewed by many as limiting or restricting

freedom and stifling initiative. This is not true when standards
are developed and applied intelligently. Most of the barriers to
effective standardization are generally psychological, as opposed
to technical, in nature. Some program managers feel that stan-
dards are an infringement on their prerogatives and deprive them
of the latitude that they need to do their job effectively. Even
though allegiance to standardization is sworn to, the following
are some of the more common excuses given for not comply-
ing with the standards.

1) Because our problem was unique, it was necessary to
deviate.
2) It was not feasible to comply with the standard at that

time.
3) We will start out using this more expedient nonstandard

and will convert to the standard at a later, more opportune time.
4) An excuse that deserves a little elaboration usually is heard

in one of the following forms: this is a one-shot program and it
will be thrown away after a very short period of time; or this
program will be like a black box, none of its functions will ever
change; therefore, it will never need to be modified. This
rationale is pure mythology. These kinds of programs have a
long history of hanging around for years and requiring signifi-
cant modification and maintenance (coupled, of course, with
associated expenses). Short circuiting the stardardization
requirement always winds up being an expensive expedient.
Standards cannot be expected to be complied with volun-

tarily. Enforcement mechanisms are required to cope with the
above kinds of excuses and many others as well. The enforce-
ment job is very unpopular, but necessary because standards
do save money.

IV. MANAGEMENT ACTIONS
One of the basic managerial objectives is to reduce or mini-

mize costs. Thus, the thrust of most corporate software
management initiatives should, in one way or another, be
related to reducing the total life cycle costs of a system. The
emphasis is on total life cycle. It has been estimated that 75
percent of the cost of a system at General Motors is involved

321

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

in the operational or maintenance phase of its life cycle [2].
Yet maintainability considerations for this phase are often
compromised by project personnel in order to facilitate
efficiencies during the development phase. Corporate managers
should guard against these myopic tradeoffs and more im-
portantly, they should be prepared to "front-end load" a
system development anticipating the return on the investment
to occur during the system's maintenance phase.
Since software is critical to the functioning of any automated

system, it should receive major attention by corporate manage-
ment. There are numerous actions available at the corporate
level for favorably influencing software over its life cycle. As
used herein, the software life cycle is divided into the following
phases: specification-where it is decided what the corporation
will be gaining in return for the resources expended; design-
where the software's usefulness to the organization is deter-
mined; programming-the period of software construction;
integration and test-where it is discovered what the corpora-
tion actually received; and operation and maintenance-the
period where return on investment is realized. Following
through these phases of the life cycle, the next few paragraphs
will discuss some of these management actions. There are two
points to be kept in mind: 1) these are corporate level actions,
and not an all inclusive list of detailed actions that should be
taken; and 2) most of them occur during the early phases of
the life cycle. Much of what is done early in the software life
cycle has impact throughout the remainder of the life cycle.
This is why it is so difficult to step in when a system is having
difficulty and put it back on track.
In spite of the software orientation of this paper, it should

be pointed out early that the customary production manage-
ment disciplines of Quality Assurance, Configuration Manage-
ment, and Reliability and Maintainability are fundamentally
the same for software as for hardware and should be applied
in software developments. However, some of the implementa-
tion techniques within these disciplines are necessarily different.
For example, Quality Control disciplines should be applied to
both hardware and software. In hardware, there are microm-
eters, calipers, ohmmeters, gauges, and so forth to check
certain measurements to assure they are within tolerances. On
the other hand, these tools will not work on software and there
are no adequate counterparts. Thus a very different set of
quality assurance techniques have to be used for software. In
the configuration management domain, identification and audit-
ing procedures are vastly different. The physical configuration
audit for software is not yet adequately defined. In Reliability
and Maintainability, mean time between failure (MTBF) and
mean time to repair (MTTR) are widely used hardware param-
eters, but in software their values cannot be ascertained.
Among project personnel, software-oriented people tend to feel
that software is so different that all of these disciplines require
complete modification in order to be applicable. On the other
hand, the hardware traditionalists feel that software manage-
ment is no different from hardware management, and there-
fore, no modification of these disciplines is required. Both
groups are wrong, of course. Corporate management should

tremes and they should insist upon the appropriate applica-
tion of these effective disciplines.

Specification Phase
Before the acquisition is initiated, it is important that it be

thoroughly planned. It should be a corporate policy that all
project managers be required to develop (and then adhere to)
life cycle mangement plans for their systems. These plans
should contain a lot more than just a layout of finances and
schedules. They should include software development plans
with a detailed itemization of the work to be performed and
the associated milestones, configuration management proce-

dures that institute control of change and integration at an

earlier time than is now customary, and they should map out
all verification and validation or quality assurance procedures
starting on day one and lasting throughout the total life cycle.
The life cycle management plans should also contain resources/
facilities utilization schedules and considerations. They should
provide for test plans that ensure that testing is timely, com-

plete, systematic, and repeatable, not leaving this regimenta-
tion to chance. Further, they should plan in detail for tran-
sitioning the software from development to maintenance,
especially if responsibility changes from the developer to a

different maintenance organization. Finally, all aspects of the
system's operational or maintenance phase must be laid out.
Throughout the entirety of the life cycle management plan, it
is critical to ensure that all schedules are realistic.
With an approved life cycle management plan in hand, it is

then time for the project manager to draft his solicitation for a

contract proposal. (Even if the development is to be a totally
in-house effort, it is very profitable from the corporate point
of view to formalize the developer-buyer relationship by
requiring a written "in-house" contract-like document between
the two groups.) Solicitations and their responses often get
turned into contracts, so the software coverage must be com-

plete; subsequent contract changes are very expensive. A com-

mon pitfall is to fail to include in the contract as a deliverable,
some piece of support software, only to discover later that it is
necessary for operations or maintenance. Such an acquisition
subsequent to the original contract is usually very expensive.
An especially valuable corporate management policy is to
require that the team that drafts the solicitation include a person

from the organization that will ultimately be responsible for
software maintenance. That individual will have a very selfish
motive for ensuring that the software is well covered.
Another good policy to be applied when drafting the solicita-

tion is to specify (or plan to furnish to the contractor) specific
items of existing hardware and software to the maximum extent
possible. An effective corporate standardization program

makes it much easier to draft the solicitations and specifica-
tions. Additional savings can be realized by specifying the use

of off-the-shelf hardware and software technology for system
development. There are times when research and development
(R&D) to advance the state of the art is appropriate as in the
case of achieving a competitive advantage. But as a general rule,
it is better to forego the R&D risk and expense and capitalize

recognize that the truth lies somewhere between these ex-

322

on such investments of others.

www.manaraa.com

COOPER: CORPORATE LEVEL SOFTWARE MANAGEMENT

In recognition of life cycle maintenance, the acquisition con-
tract should be required to contain a provision for the capability
to expand critical system resources at a time subsequent to
delivery of the system. In addition to needing such availability
for future corrections, enhancements, and modifications, this
requirement has the favorable side effect of reducing cost and
risk. It is well known that as a program approaches the physical
limits of the computer, shoehorning in the final functions
causes the cost and complexity of the program to increase
dramatically [3]. Reserved resources and expandability provide
a buffer against this phenomenon. Another beneficial side
effect of the specification and costing of expansion require-
ments is that all levels of management attention are focused on
these resources. Program development visibility is thus en-
hanced.
Higher levels of management can contribute to a project's

probability of success in the area of staffing. When initially
staffing, it is important that a high percentage of the personnel
have strong experience in the applications area being addressed.
Another important function that corporate level management
can perform for the project is to strive to ensure stability of
project personnel. This includes both in-house and contractor
personnel. Continuity is an important consideration. It is
very expensive and time-consuming to train a new person to the
same point of expertise as the person replaced. This is not
news to technical project managers in any profession, but it
bears repeating for the benefit of corporate managers.
A management action that can have very beneficial effects

on the development process is the use of independent, external
project quality audits or reviews. There is a natural resistance
to audits when they are first initiated, but this is quickly over-
come as the project manager and his staff begin to realize the
resulting cost savings and development efficiencies. These
audits or reviews should be initiated early in the development
cycle while there is still ample time and opportunity remaining
to make constructive changes. Late in the development process,
the majority of the project parameters have become fixed, and
corrective changes are difficult and expensive to make. The
objective of audits is to improve the quality of the system by
insuring conformance to prescribed policy standards and disci-
plines. When reviewing project requirements, specifications,
plans, and procedures, various inconsistancies and gaps, as well
as errors, are frequently uncovered. The net result is a more
efficient system development.

Design Phase
Heavy emphasis by both corporate managers and project

personnel should be placed on the design phase of a develop-
ment project. The old adage of an ounce of prevention being
worth a pound of cure is especially applicable to a software
development. A Verification and Validation or Quality As-
surance plan should already be in execution by the project
manager and his contractor. The group performing this func-
tion should not work for the project manager in order to be
protected from any potential conflicts of interest or coercion.
Coercion is particularly apt to occur when a project is in a

The following are several project initiatives that should be
fostered by corporate management. Involvement of the even-

tual maintainer in the monitoring of the project is to be en-

couraged. His expertise and selfish interest should once again

be utilized. A disciplined program development methodology
with incremental integration and testing should be mandatory.
The system design and architecture should be validated by
modeling, simulation, or even manually prior to being im-
plemented. Not all software architectures are successful. There
are a few that just cannot be made to work, and there are many

that will require a great deal of unnecessary change (and poor

design as the cause may not be readily apparent). This could
yield an especially dangerous situation because faulty designs
and architectures normally do not show up until system in-
tegration or installation when there are neither time nor re-

sources remaining for repair.
A vital corporate policy during the design phase is the require-

ment for documentation of interface specifications. This in-
cludes all software to software, and system to system inter-
faces. The key to success of these interface documents is that
they be jointly developed by people from both sides of the
interfaces and not be done unilaterally. They must be frozen
before the system can be completed. As soon as they are com-

pleted, they must be placed under strict configuration manage-

ment since a fluid interface could have serious repercussions
throughout the system over a long period of time.
Finally, programming in parallel with design should not be

permitted. There is always a temptation to get started too early
with the coding. Coding gives some tangible way for the proj-
ect to demonstrate progress, but it must be resisted. Not only
does it yield a lot of wasted time and resources as the design
changes, but it also builds in a subconscious reluctance to make
necessary design changes. It should be required that any design
to be programmed should be first completed (excepting
"STUBS") and formally reviewed prior to commencement of
coding. Headquarters should take this procedure into considera-
tion when reviewing the project's progress.

Programming Phase
Prior to the commencement of programming, a corporate-

wide programming standards and conventions manual should
be placed in the hands of all programmers. In addition to
providing discipline within the development process, this docu-
ment provides most of the necessary ingredients for software
transferability. The ground rules for achieving program modu-
larity are also spelled out. Included, too, are the protocol rules
to be followed for interfacing modules, programs, etc. This
manual is every programmer's bible.
The use of Structured Programming or a similar program

development discipline should be mandated from corporate
headquarters [4]. The idea of code walk-throughs, a la the
egoless programming concept, has proven to be extremely
valuable [5]. Not only have walk-throughs helped to dis-
cover programming errors and interfacing problems early
when they are easiest to correct, they have helped in the
removal of the veil of secrecy from around the programmer.

funding or scheduling crisis.

323

From the coporate viewpoint, the wizard or prima donna

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

is not to be tolerated on production-engineered software
projects in the organization. Not only is this type of program-
mer a personnel management problem, but generally his secret
code violates all standards and conventions and can only be
maintained by him.
Performance monitoring by both hardware and software

techniques should be a component of the corporate tool bag.
Its usage should be instituted during the programming phase
and then continued throughout the remainder of the system's
life cycle. Although these tools have been in existence for
several years, they are still not widely used. One typical reason
is that project personnel cannot convrince corporate manage-
ment to expend the necessary resources to obtain them. Per-
formance monitoring is invaluable for identifying timing
problems, bottlenecks, and system loading. Once installed,
these tools can benefit all of the systems in the corporate in-
ventory.

Integration and Test Phase
It is important that the testing be conducted by someone

other than the developers. From the headquarters level view-
point there are three good choices-a separate test group, the
Quality Assurance group (if a test group does not exist), or the
software maintenance organization. Testing must be objective,
for developers can be paternal and biased. The testing must be
against the original requirements, not the program "as built."
Real world testing must be insisted upon. At some point, it is
desirable to involve the ultimate operators and users in order
that they may subject the software to the type of treatment
that it will receive after acceptance. Remember, it is the user
who must be satisfied in the long run.
During the integration and test phase, the need to have total

configuration control cannot be overemphasized, for testing
during this period will uncover new software errors. The daily
configuration control problem becomes one of keeping an
accurate status of all errors, control of all changes to programs
and documentation (including changes to the changes), and
progress of program integration. For large systems, this process
must be automated or it will be excessively cumbersome. The
configuration control process is a critical function, and as such,
deserves considerable corporate management attention.

Operations and Maintenance Phase
Since most large organizations have more than one automated

system in their inventory, the overall corporate maintenance
strategy plays a crucial part in many of the decisions of the
functional system acquisition. Most critical is whether life
cycle maintenance is to be performed "in-house" or external
to the organization. When maintenance is to be performed by
the original developer, it is important when making acquisition
decisions not to allow yourself to become addicted to his sup-
port. No matter how large an acquisition, your system will not
always be his number one priority. At some point, whether it
be one year after delivery or fi've, he will be unable to keep his
best people on your job. He will have more immediate crises
to resolve, and he will need systems where he can assign new

employees for training. Furthermore, normal personnel attri-
tion is to be anticipated. Someday, you may likely become
dissatisfied with the contractor's performance and would like
to be in a position to replace him.
The motivation for in-house maintenance is to reduce costs.

A contractor must make a profit to stay in business. He is an
expert in his business and may, in fact, be able to do the
maintenance more economically than you. However, the true
economics must tell the story, thus, the analysis leading to a
maintenance decision must be done honestly and on a full cost
basis. There are other factors that this analysis should take
into account such as delays in contracting, manpower ceilings,
and peak workload periods. There is a nuisance factor to con-
sider as well; the organization might have to deal with a different
contractor for each system in the inventory. At best, this is a
very complex issue and should be decided very carefully.
Deserving of considerable corporate interest is the transition

of software from development into operations and maintenance.
This evolution must be meticulously planned well in advance
of system turnover. The maintainer must have in place all of
the facilities and tools needed to operate, test, and maintain
the new programs. This, in some instances, may require lead
times of up to 2 years. The support software such as compilers,
debug aids, librarians, etc., must be available the first transi-
tion day to support program maintenance. Personnel must have
already been trained in the operation of and be intimately
familiar with the design and coding of the new programs. This
is greatly facilitated if the maintenance personnel have been
involved in the development process as suggested earlier.
By the time the "turnover" point is reached in a system's

life cycle, corporate level management cannot do a great deal
more to influence the quality of a system. There is, of course,
plenty of work and management still involved, but the character
of the system has been, to a great extent, cast in concrete. If
the system is to be modified in the future, then that effort will
be tantamount to a new development and the earlier life cycle
phases must be repeated.

Finally, the configuration management of the system con-
tinues to be of great importance to corporate management.
The change control process that was so critical during the in-
tegration/test phase must be continued. It is necessary to know
the exact status of the software at all times. The integrated
hardware and software configuration control board that should
have been established early in the development process must
remain in existence for the lifetime of the system.

V. MANAGEMENT CONTROLS
In spite of its position, corporate management has few direct

control mechanisms for enforcing policy and standards among
projects. The most effective control is often referred to as
"the golden rule" (he who has the gold makes the rules). Con-
trolling the availability of funds has a very positive effect over
adherence to the rules. Withholding of procurement authority
until all the various rules, policies, standards, etc., have been
complied with is very effective in the initial stages of a project.
Beyond these two mechanisms, the remaining controls tend to

324

www.manaraa.com

COOPER: CORPORATE LEVEL SOFTWARE MANAGEMENT

be more indirect. Examples of these are individual performance
evaluations, promotions, personnel transfers, psychological
methods, and leadership.
The explosive proliferation of digital technology throughout

system acquisitions has served to amplify the need for astute,
disciplined software management. It is tempting for head-
quarters to delve too deeply into a project's management.
However, the implementation of objectives and controls should
be constrained by the following fundamental rule: corporate
management should only be concerned with telling project
personnel what to do-not in telling them how they should do
their individual jobs.

VI. MANAGEMENT INITIATIVES
Although the need is apparent, there appears to be precious

little innovative activity in the area of software management.
Perhaps this is so because computer scientists believe that
management per se is not their business, and the management
professionals assume that its the computer scientists' respon-
sibility. Be that as it may, there are many software manage-
ment problems yet to be solved as well as plenty of room for
improvement in the way that such business is conducted. In
short, there are many challenges and opportunities for initiatives
in software management.
One of the greatest corporate software management needs is

the development of new types of contracts for procuring soft-
ware. Because of the inability to adequately specify and eval-
uate software, the majority of contracts used are of the "Cost
Plus" type. Sometimes they contain incentives by way of
awards and penalties. Unfortunately, award and penalty deter-
minations easily can be made on the basis of a "personality con-
test" or a legal protest. The incentives and motivations in "Cost
Plus" contracts are such that it is not in the contractor's best
interest to do a good job. The poorer job that he does, the
longer he is kept on the payroll. Low quality also offers the
potential for new business, by either repairing the shoddy
workmanship or developing a replacement system. The higher
the costs, the more profit is realized. There is, thus, little
incentive to be early or on time in delivering a product. Addi-
tionally, if the software is a low quality product written
in assembly language, then only the developer knows how the
program works. It would cost too much to pay someone else
for program takeover.
More desirable would be "Fixed Price" contracts, with

realistic incentives that could be determined objectively, and
with the availability of warranties on software. These would
direct the vendor's incentive to perform along more productive
channels. Also needed is a program generation and development
methodology which would minimize dependence on a given
vendor's unique capability. This would promote competition
and provide an avenue for increased portability of programs
and systems.
There are several R&D tasks embedded in these concepts.

First, the customer needs to be able to write complete, correct,
and unambiguous specifications for the software he wants to
acquire. Efficient application oriented specification languages

would be valuable tools for this process. A good software con-
tract needs to contain reliability and maintainability require-
ments. Since these concepts have not yet been defined, how
then can they be included in a legal document? Assume for
the moment that the foregoing could be done, how then could
the software be evaluated to determine if it were in conformance
with the contract specifications? Definition of error, per-
formance criteria, software quality criteria, and sufficient test-
ing are just a few of the tools needed to measure contractor and
program performance. To assure vendor independence, the
exact status and character of a program at any instant in its
life cycle must be completely known. There are several activi-
ties underway that may turn out to facilitate this independence
in operational environments, such as "PARNAS Modularity"
[6]. The question is, are they sufficient?
The most costly corporate resource used in the development

and maintenance of software is people. There are two ways of
reducing manpower costs: increasing productivity and increas-
ing automation. Much in computer science R&D is already
devoted to these areas, but some solutions are needed quickly,
e.g., automated verification, validation, and testing procedures
[7].
Computer program documentation is, of course, required,

but how to produce it and to what extent it is to be produced
are subject to a lot of debate. Program design languages and
self-documenting code are envisioned as solutions to how pro-
grams should be documented. But they only address program-
ming per se. What about requirements specification, test
requirements and specifications, user and operator instructions,
interfacing definitions, and integration requirements? There is
a pressing corporate need to minimize program documentation
requirements and then generate the essential documentation
set automatically. This function is presently being performed
in a very labor intensive, error prone, and expensive manner.
The methodology for transitioning computer science tech-

nology from the R&D laboratory into the industry and user
community is an area needing considerable effort. For example,
when program verification techniques and software correctness
proofs begin to approach reality, how will they be tested for
feasibility for practical usage? Then how are the techniques to
be injected into the developer's inventory of tools? Reflect
back on how Structured Programming evolved. It has taken
far too many years for it to become an accepted programming
principle [8]. Management had too much at stake to gamble
on a new, unproven procedure. It needed several valid im-
plementations to convince the development community that it
was a safe, cost-effective discipline. In fact, it is still not yet
universally accepted throughout the software community.

VII. SUMMARY
Corporate level software management's prospective of soft-

ware development and maintenance is far more encompassing
than that of the individual manager of projects and systems.
Often, decisions made at this higher level appear not to be cost-
effective for a given project; however, when all projects and
total life cycle considerations are taken into account, they

325

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 4, JULY 1978

should reduce overall software costs. Attention should be
focused on those activities which have high payoff during the
long maintenance phase of a system's life cycle.

Discipline (and its standardization subset) is the key to all
management techniques and tools. Until recently, the soft-
ware domain was largely uncontrolled. This is now changing
and great opportunity exists to improve the management of
software by the imposition of discipline.
Successful implementation of corporate policies which en-

hance the professionalism and discipline in software processes
is the key to success in this area. These policies must come
from the top and be enforced with the same vigor as other key
corporate initiatives. There is no substitute for good manage-
ment here, nor excuse for lack of it.

REFERENCES
[1] F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA: Ad-

dison-Wesley, 1975.
[2] B. W. Boehm, "Software and its impact: A quantitative assess-

ment," Datamation, May 1973.
[3] S. L. Elshoff, "An analysis of some commercial PL/I programs,"

IEEE Trans. Software Eng., vol. SE-2, pp. 113-120, June 1976.
[41 C. L. McGowan and J. R. Kelly, Top-Down Structured Program-

ming Techniques. New York: Petrocelli/Charter, 1975.
[5] G. M. Weinberg, The Psychology of Computer Programming.

Princeton, NJ: Van Nostrand Reinhold, 1971.

[61 D. L. Parnas, "On the criteria to be used in decomposing systems
into modules," CAEM, Dec. 1972.

[71 W. C. Hetzel, Program Test Methods. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[8] E. W. Dijkstra, "GOTO statements considered harmful," Commun.
Ass. Comput. Mach., vol. 11, Mar. 1968.

John D. Cooper received the B.S. degree in
agriculture from the University of Missouri,
MO, and the M.S. degree in computer science
from the Naval Postgraduate School, Monterey,

He is a Commander of the U.S. Navy and
Assistant to the Director (Software Manage-
ment), Computer Resource Office, Headquar-
ters, Naval Material Command, Washington, DC.
This office is responsible for establishing the
policy standards, and procedures for all com-

puter hardware and software in the Naval Material Command. He is the
Configuration Manager of the CMS-2 and SPL/I programming languages
and is the Navy Member of the DOD High Order Language Working
Group. He is also responsible for MIL-STD-1679. He is currently on
the staff of the Navy Logistics Management School where he lectures
on software acquisition. His previous tour of duty was at the Fleet
Combat Direction Systems Support Activity, Dam Neck, VA. During
this assignment, he served as the designer and project officer for the
development of software for various Naval Tactical Data Systems
(NTDS).

Controlling the Software Life Cycle-The Project
Management Task

WILLIAM C. CAVE AND ALAN B. SALISBURY, SENIOR MEMBER, IEEE

Abstract-This paper describes project management methods used
for controlling the life cycle of large-scale software systems deployed in
multiple instaltations over a wide geographic area. A set of manage-
ment milestones is offered along with requirements and techniques for
establishing and maintaining control of the project. In particular, a
quantitative measure of software quality is proposed based upon func-
tional value, availability, and maintenance costs. Conclusions drawn are
based on the study of several cases and are generally applicable to both
commercial and military systems.

Index Terms-Life cycle, software development, software manage-
ment, software quality, system management.

Manuscript received June 15, 1977; revised December 3, 1977 and
January 1, 1978.
W. C. Cave is with Prediction Systems, Inc., Manasquan, NJ 08736.
A. B. Salisbury is with the Research Directorate, National Defense

University, Washington, DC 20319.

I. INTRODUCTION
THIS paper is the result of an effort to investigate project

management methods which were used successfully in the
development of several large software systems. As used herein,
"success" implies the delivery of a quality product, on time and
within budget, resulting in a high degree of user satisfaction.
A number of systems spanning a significant range of applica-

tions were examined during the course of this effort. Exam-
ples include an automated engineering design system, a stock
transfer accounting system, and a real-time military command
and control system. Sizes ranged from 340 000 to 700 000
bytes of object code, and assembly language examples were
considered in addition to higher order languages (Fortran and
Cobol). All of the systems studied had the common property
of deployment at multiple geographically dispersed locations,
ranging from 6 to 15 in number.

0098-5589/78/0700-0326$00.75 i 1978 IEEE

326

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

